Assumption: Let us assume $\sqrt{3}$ is rational number

$$\Rightarrow \sqrt{3} = \frac{a}{b}$$
,

Fact: where a and b are co – prime integers (common factor is only 1)

Cross multiply

$$\sqrt{3}b = a$$

Squaring on both sides

$$3b^2 = a^2 - 1 eq$$

$$b^2 = \frac{a^2}{3}$$

As per theorem" Let p be a prime number. If p divides a2, then p divides a"

As 3 divides a², then 3 divides a

- \Rightarrow 3 is a factor of a
- \Rightarrow 3c = a ---- 2 eq

substitute 2eq in 1eq

$$3b^2 = (3c)^2$$

$$3b^2 = 9c^2$$

$$b^2 = 3c^2$$

$$c^2 = \frac{b^2}{3}$$

As per theorem" Let p be a prime number. If p divides a², then p divides a"

As 3 divides b², then 3 divides b

$$\Rightarrow$$
 3 is a factor of b

Therefore, a and b have at least 3 as a common factor.

But this contradicts the fact that a and b are coprime.

This contradiction has arisen because of our incorrect assumption that $\sqrt{3}$ is rational.

So, we conclude that $\sqrt{3}$ is irrational

Show that $5-\sqrt{3}$ is irrational.

Assumption: Let us assume that $5-\sqrt{3}$ is rational.

Fact: $\sqrt{3}$ is irrational number

5 - $\sqrt{3}$ = a/b, where a and b are co-prime integers

$$5 - (a/b) = \sqrt{3}$$

$$\frac{5b-a}{b} = \sqrt{3}$$

Since a and b are integers, we get $\frac{5b-a}{b}$ is rational, and so 3 is rational.

But this contradicts the fact that $\sqrt{3}$ is irrational.

This contradiction has arisen because of our incorrect assumption that $5 - \sqrt{3}$ is rational.

So, we conclude that $5-\sqrt{3}$ – is irrational.